TRS-80 EDITOR/ASSEMBLER

OPERATION
AND
REFERENCE MANUAL

© Copyright 1978, by Radio Shack, A Division of Tandy Corporation, Ft. Worth, Texas 76102

{)

TABLE OF CONTENTS

Page

Tt rUGHON S i i o § o5 5 smenismins ard s 4 seraetlbig &5 s 5 5 W dbabainsnim e o e musdeleleiehe sy § ivdeun 1
NotationConVERBONS /. . - o - ccesimns o7 2 4 5 5de bidiehod &l o 5 v & 3 8 s mteieis 8 8 & B3 SiaTeam o3 Sisias 1
EditorfASSEMBIET. . . o o « Ssvsrmnsmmiisie w5 e naeserensd st e 5 o b e she e v @ acwieen e o @+ mieiie 1
LoadiNg. . . o, - el B R S b AT A S E S R T T § £ ¥ A RENETE WIS e Yoa weEs 2
COMIMENAR: . 575 v sisiemrans & 4 & & i wisimmehm 5 6 3 6 Wi 5 GusTEasSTnE ® ¥ o suejeissinete & = o s wsissee 2
AtaMBIRTAY . 0 o G s AR S § e SRS n . S e et €8, S 2

BREE (DY s vvivs wms 4 FECERA 7 5 ¥ 3 A AR ¢ % N R R & 5 s e 3

BRI - wiim v s e = st e aAad B BRI S v § NN e 3

Edit TB). it .- i £ 00 a2, e o v Ly dhvinie oile s B ¢ b e SR iRt P 3

3T B 1 7 P e L I o O R e S AL T R T e +

Hardeopy (B o & & 2 n s et s & 5 3 40 WRAe 05 o0y & SRR § b e e 4

18,1 2) (RSN . 4 = i O (o W, O i P e ¥ 4+

LORECE) v rs 5 a5 s aBes o E 0 1 WISEAEA (18 SV B ST R e] S g ATt 6, o 4
Number (M)coovvcnonneeceanaiiginciiacnsaasnsnecnssnssisees 4

PHRETEY 50e b 5 5000 90510 e 5 5o ind-5 & NS A w95 3 0 G i wlws e ww a o 5

Reglsce (R) £ A0\ L W01 8 Figs 08 3, S e e L 5

2 e 1 O LN e e e il e e ol e L e e 5

SerolEantd Tall . . o nlecimmchhonn doe e S s GRS ERE B 78 S I BT R T R SE] B A A T o 4 5

VLR OWD v o & & oo wlaperesarans b v ¢ e s oeillonedo el o ¥ o o incmiatucs ince: o o iasncers i 2 5A

CIBIOtEE THPOE o o s o v o o v o omislnsiod & § 4 3 3 B BSBEERS ¥ 5 4 3 4 5 ELHBECLS 10 Gy 6
SUBHE TR oois v v a5 0 3 swmmiradnis v o v 64 BRI 8 & 88 SR AR R A R A R 6
Assembly Language v cvviviita e e a e aa e 8
BPRENE . vk v ww 3 lwta donsmgrins a2 5 *EmaERnd R 48 & § Lma R & e e
BRTISHIONE v 5 5 56 55 o iaterame i & s o » 4 SHIP IR ¥ 8 2 GRS G w8 X 9
StatusBIagE . oorliln = = - ek SLEE S B Rea W R R F R NS Y ek e 9
PAUdO-0PS: ivicic s 55 v 5 8 e Wi s o5, 4 1 T e e S PR B RO R e e 11
Assembler Commands 11

ZR0 NSO SOt i s va 5 575 5 awvarebayuny o s s 5 s Eeirmmisranes = o #1e @ W wiAGERARIRIRE A 8 = AT MHLRLE R &} # 11
Index to Instructions R e, AN I) o= Rl AP 11-12

S Bit LOBH GROUR 1« o wvwsinio share 5 o misimonisimsani e & o 8 % 7 mmsimimisonm s 8 S8 eiebinm s s & 1 % 13

16 BIEEOad GIOUP v v cieie v v v 6 55 5 500s0aTaris 8 5 v 8 30 0 BEHRIF 516 & & Smiemraihiaio s & o a 24

Exchange, Block Transfer and Search Group.o it 34

8 Bit Arithmetic and Logic'ai ETOND, 5. n misie M AT s 3 4 5 5 % FeEhaeiale ¥ & § 5k Rismile = @ 43

General Purpose Arithmetic and CPU Control Group vt 36

16 Bit Afthmetic GIOUD. . . .« v e v vt v e ittt rsm e s aeaaaoasensennnnnsas 63

Rotate and ShHUGROUD . o 2 s « < & 5 ofssvmasme s 5w b mpaiensisss 5 1oe = sieiessee ros 3 58 69
BitSet,Resetand Test Groupo v i i v e incesoseomaneeneansas 81

UMD GIOUD.: : & soirsiaiain # + v ¥ won wiacntinosensini s 5 = @ x S mines e 4 8 WSS e D 86

Gl and Rt GrOBD e s e e s S erd B S A SPT IR B I 2 0L S 92

Input and QUIPUL GIOUP. . . . o v ot v e e i it st i iir e s aaam s n et 98

Z-80 Hardware Configurationu.uinnt it eiete ittt et e e e et 108
TARTPU ARG . . .coinornad 3y s nvin i Do bl g e & & TS MREeL WD LS 108
CPU Registers. = WU e 5 vyl ey i s sy o 108
SPECiN Pirpbee Registers« « « . o 1 VORI SET00G5 B0 ol siflsy soonadl o 108
Accumnulatorand Flag Registers.ttt i, 109
General Purpose Registers. daie, FeUTS R s e aar 109
Arthmetic & Logic Unit (ALU). it e eeans 109
Instruction Registerand CPUControl vttt it e eeee i innnnn e 109
LSV CPU IR DRMEHWHON . - & i + 6 6 55 g b o 08 ST Al QIEBRTLIAAG &) T 109
Z-80 CPU INStIUCHON SEt . .+« . e v ettt e e et ettt e e et e e e e aee e T
Introduction to Instruction Typesttt ettt eeaanns 111
ANARTSEIR MOy, o s 5 < 55 n e B S G AP ST it S et ek A 111
DOnedBt s, e s A e oy e e R i SN SRR L, LR AR Tl 111
ImmediateExtended.............: 111
Modified Pige Zero Addressing &, 0L bl g ol 1S WL A el qun 112
NIt ARSI <« . v 5 suisiewme 5 § § F0S SR 55 A% b A i n Ty 112
Extended Addressing e 112
Indexed Addressing O, ot o £ e BN 12
Register Addressingouvunnn.. SUIRE R R 112
Implied Addiessing ..o s vuu o vmmumesays 35 5 3 5 5 SEEEE 5 T8 b S 112
Register Indirect Addressing it e 112
Bit Addressing W ey S R R R R R AL b s e Sy 5 113
Addressing Mode Combinations . . . <« o 595 DERWRES S50 045 erbiedeihie 4 ST s+ «hee o L3
OEE FHIBNG . s 0 & etnansnn & 5 5 & w assbvssanas iy 5 o Lo v SURBLSIEE U NG MG o 113
Appendices
Mumetic.Listiof Iostmctpn SBE ccvvii v vs s on e £ 68 b B T e R 114
Alphesinerc List SPRRHMEH0056 . ;. onvvvn i v 00 o, SRRl m il 000 nmdont ol Gle s 120
Error Messages B il a s e S % S TR BT B e e o 125
MemoryMap .occ oo s s v] SH Y S RSTREE T F RN e b Gt e e s] 130-131
Editor/Assembler Command List e e, 132

iii

gt

Introduction

The TRS-80 Editor/Assembler is a RAM-resident text editor
and assembler for the TRS-80 microcomputer system. The
Editor/Assembler was designed to provide the ease of use
required by the novice, while providing capabilities powerful
enough for the expert. LEVEL Il BASIC is capable of
directly loading the Editor/Assembler cassette tape. LEVEL
[BASIC must read-in the Editor/Assembler using the
SYSTEM tape (included).

The text editing features of the Editor/Assembler facilitate
the manipulation of alphanumeric text files. The most
common use of the editing capability is in the creation and
maintenance of assembly language source programs.

The assembler portion of the Editor/Assembler facilitates the
translation of symbolic language source programs into
machine executable code. This object code may then be
executed with the SYSTEM tape for LEVEL I BASIC or
directly with the SYSTEM command under LEVEL I
BASIC. Previous knowledge of machine language and the
hexidecimal number system is assumed throughout this .
manual.

The Assemnble command (A) supports the assembler language
specifications set forth in the Zilog Z80-Assembly. Language
Program Manual, 3.0 D.S., REL.2.1, FEB 1977, with the
following exceptions.

Macros are not supported.

Operand expressions may only contain the + and —, &
(logical AND), and ((shift) operators, and are evaluated on 2
strictly left to right basis. Parentheses are not allowed!

Conditional assembly commands, where a programmer may
control which portions of the source code are assembled,
are not supported. ;

Constants may only be decimal (D), hexidecimal (H), or
octal (O). See section under operands. .

The only Assembler commands supporte& are *LIST OFF
and *LIST ON. i : :

A label can contain only alphanumeric characters. (Use of
the — and ? is not supported.) A label can be up to 6 charac-
ters long. The first character must be aiphabetic. The other
characters must be alphanumeric.

NOTATION CONVENTIONS
1 Square brackets enclose optional infor-
mation:

P(line1(:line2]]

The :line2 is optional, and the P need not
be tollowed by anything at all since all

options following P are enclosed in brack-
ets. The brackets are never actually typed.

The ellipses represent repetition of a
previous item: :

A[[} filename] [/switch{/switch]. . .]]
The /switch may be repeated several times.

CAPITALS Capital letters must be as shown for input,
and will be as shown in examples of output.
lowercase

The user must substitute in his own values
(eg: inc. filename, line) ‘

Underscored information is output printed
by the Editor/Assembler unless specified
otherwise. This distinguishes user input
from computer output but is never actually
typed by the user.

underscore

B A lowercase B with slash specifies a manda-
: tory blank(space). ‘

line Any decimal number from @ to 65529

Numbers-spécify two different line num-
bers (line #1 is usually less than line #2)

linel:line2

° ; A period may be used in place of any line
number. It represents a pointer to the
current line of source code being assem-
bled, printed, or edited.

A pound sign may be used in place of any
line number. It represents the first (lowest
line number) source code line in the text
buffer.

* i - An asterisk may be used in place of any
line number. It represents the last (highest
line number) source code line in the text
buffer. - ;

inc A number representing an increment
between successive line numbers.

filename A character string specifying the name of a

cassette file. See section on Cassette Tapes.

Editor/Assembler

In brief the Editor/ Assembler is designed for a user to type in
source assembler code. This source code is assembled and the
resulting object code may be recorded onto tape. The Editor/
Assembler may also read-in, record, and edit other source
code files stored on tape. Of course, the source files manipu-
lated by the Editor/Assembler need not be assembly programs
only. The files may be any text information created by the
Editor/Assembler. BASIC program tapes may NOT be

edited by the Editor/ Assembler.

The limit to the size of an assembly language program is the
amount of RAM memory in the user’s computer system. The
Editor/ Assembler maintains a *‘text buffer.” This buffer
starts at the end of the Editor/ Assembler program and con-
tinues to the end of memory. This usually leaves around 7K
of memory for the text buffer which will contain the source
file.

LOADING
LEVEL II BASIC

Since the Editor/Assembler is a machine language program,
it may only be loaded using the SYSTEM command. Place
the Editor/Assembier tape into the cassette recorder and
depress PLAY. The volume should be set to 5 or 6 (thisisa
500 baud tape).

Type SYSTEM and then press ENTER. The computer will
respond by typing:

b &

Now type EDTASM, the filename of the Editor/Assembler,
and the tape will be read into memory. Once loading is
completed, type a / (slash) and press ENTER, the monitor
screen is clear and the message:

TRS—-80 EDITOR/ASSEMBLER 1.1

k3

is printed. The asterisk is the Editor/Assembler prompt
symbol. This is its way of requesting a command. Depressing
the BREAK key will always return you to an asterisk except
when reading a tape, writing a tape, or editing a line. The
BREAK key may be used to abort an assembly or a print-
out in progress.

LEVEL I BASIC

Since the Editor/Assembler is recorded on tape at 500
baud, LEVEL [BASIC CAN NOT DIRECTLY read-in the
tape. You must first load the SYSTEM tape provided. This.
program can then read-in the 50@ baud Editor/Assembler
tape.

Load the SYSTEM tape into the cassette recorder. Set !
volume to 8 or 9 (this is a 250 baud tape). Type CLOAD
and BASIC I will read-in the SYSTEM tape. The program
will start as soon as loading is finished.

The computer will type:

*

Now load your cassette with the Editor/Assembler tape. Set
volume to 5-6 (this is a SQ@ baud tape). Type EDTASM and
press ENTER. The Editor/Assembler will be read-in. When
the reading is complete, another * will be typed. Now type
a slash (/) and then the number 18958. Press ENTER to
execute the Editor/Assembler. The number 18058 is the
entry address of the Editor/Assembler.

TRS-80 EDITOR/ASSEMBLER 1.9

*

You may now use the Editor/Assembler as described under
the section on Assembly Language.

The BREAK key works the same way as described in the
third paragraph of this section.

COMMANDS

The TRS-80 Editor/Assembler can perform the following
commands. These commands may be typed after the prompt
symbol * where applicable. The asterisk indicates the
*‘command level” of the Editor/Assembler. The following list
contains all command level instructions recognized by the
Editor/ Assembler with a brief description of each.

A ~ Assemble source currently in text buffer
B Return to BASIC in ROM

D Delete specified line(s)

E Edit a specified command; almost exactly

like LEVEL II BASIC’s EDIT command

F - Find a specified string of characters in the
text buffer

_H Same as P command except that output

goes to lineprinter

I Insert source line(s) at a specified line with
a specified increment

L Load a source file from cassette tape into
text buffer

N Renumber source lines in the text buffer

P Print specified range of source code
currently in the text buffer

R _ Replace lines currently in text buffer. Like
the Insert command only lines are over-
written

T Same as H only no line numbers are

printed — text only.

torl Scroll up or down. Will print the next or
previous source line

e Horizontal tab

w Write current text buffer onto tape

Assemble (A)

form: * A[[} filename] [/switch[/switch].. .]]
switch may be any of the following four options

NL No listing written to screen. Errors and bad
source lines are still typed.

NO . No object code. Inhibits recording of an
object code tape.

)

NS No symbol table is to be printed

LP Send listing, errors, and symbol table to
the TRS-80 LINEPRINTER

WE Cause assembly to wait when an error

occurs. Depressing any key will continue
assembly until another error is found.
Depressing the “C” key will cause assembly
to continue without stopping for errors.
Pressing BREAK returns to command level
at any time.

The contents of the edit buffer are assembled. The object
code is written to cassette tape under the specified filename
(if no filename is specified the filename is automatically set
to NONAME.) An assembly error is usually written to the
monitor screen immediately before the line the error
occurred on. o

After the assembly is completed the total number of errors is
printed. Finally, the symbol table is printed. The computer
then types:

READY CASSETTE

Prepare your object tape for recording and press ENTER. If
you don’t want the object code, simply press BREAK and an
asterisk (command level) will be returned to you. This is the
default procedure which may be altered with the proper
switches.

Examples:

*A Assemble with filename of NONAME; list
on screen :

* APIKKY Same as above; object file is IKKY

* A/NS Assemble with filename of NONAME, no
symbol table

* A/NS/LP Same as above yet 2ll vutput is to line-
printer

* APQ/NL Assemble with filename Q; no listing # is a
mandatory blank

Basic (B) '

form: *B

Typing a B and then ENTER will return you to a MEMORY
SIZE (power up) condition in LEVEL II BASIC or a READY
state in LEVEL I BASIC.

Example:
*B

MEMORY SIZE?

Delete (D)
form: *D[linel[:line2]]

Deletes the line or lines specified from the text buffer.

Examples:

*D100:500 Deletes lines 100 through 500 (inclu-
sive) from the text buffer
* gk Deletes entire text buffer. Clears text buffer
*D. Deletes line currently pointed to by
period (.).
*DI1gs Deletes the single line 1035
Edit (E)

form: *E[line]

Allows user to edit/modify source lines just like the EDIT
command in LEVEL II BASIC. The only difference is that
the Delete command does not enclose deleted information in
exclamation points(}).

Examples:
*E. Edits current line pointed to by period (.).
*E211 Edit line 211

Sub-commands for Edit are A,C,D.E,H,I.K,L,Q,5,X.

Edit Subcommands

A~ ~ Restart edit

nC Change n characters

nD Delete -n characters

E End editing and enter changes

H Delete remainder of line and insert string. :

The H command should not be used to
delete an entire line of text. There must
always be at least one character on a

line, or future use-of that line will cause

problems. el
I Insert string
nkKx Kill all ‘characters up to the nth occurrence
of X
L Print the rest of the line and go back to
starting position :
Q Quit and ignore all editing
nSx Search for the nth occurrence of X
X Move to the end of the line and insert
Backspace Move edit pointer back one space
(SHIFT) (1) Escape from any edit mode subcommand
ENTER ENTER the line in its present (sdited)

form

The user should experiment with these or refer to the LEVEL
IT BASIC Manual. -

Find (F)
form: *F{string]

where string is a sequence of 16 characters or less

The edit buffer is searched starting at .+1 for the first occur-
rence of the specified string, If no string is specified, the
search is the same as that of the last F command in which a
string was specified. If the search string is found the line con-
taining it is printed and period (.) is updated to the printed
line. If the string is not found STRING NOT FOUND is
printed and period (.) remains unchanged. P# is often used to
move period (.) to the beginning of the buffer prior to a
search.

Example:

*Px

00100 ORG 7000H

*F3C0P

P9109 VIDEO ORG 3COQH
ot 2

PP211 LD HL,3C00H

*

Hardcopy (H)
form: *H[linel[:line2]]
Prints a line or group of lines onto the TRS-80 LINEPRINT-

ER. Period (.) is updated to point to the last line printed.
This command is exactly like the P command.

Example:

*Hzx=> Sends all lines in the text buffer to printer

*HI100:500 Sends lines 109 through 539 to printer

B Send current line pointed to by period (.)

" to the lineprinter.

R ! Prints 15 lines starting with the current
line to the printer. Not very useful for line-
printer use.

Insert (1)

form: *Iline [,inc]

The I command is used to insert lines of text into the edit
buffer. All lines of source are usually entered with the I

command. After the [command is issued, line numbers are
generated and lines of text are inserted into the edit buffer
until one of the following conditions occurs:

a BREAK is Iyped (usually way to exit)

the edit buffer is full

The line number of the next line to be inserted would be
greater than or equal to the next exit line in the buffer, The
NO ROOM BETWEEN LINES message is typed.

The line number of the next line to be inserted would be
greater than 65529.

If inc is not specified it is assumed to be the last specified
value. Period (.) is updated to point to the last line inserted.
See section, Sample Use of the I command.

Note: Source lines may be up to 128 characters long. This
size line is usually not needed. It is recommended that

you use lines of approximately 60 characters each
(printout and listings will be neater).

Load (L)

form: *L[Pfilename]

The tape is searched for the file specified by filename. If the

specified file is found, its contents are added to the current
contents of the edit buffer. Note that this may result in
improperly sequenced line numbers which must be corrected
by use of the N command for proper operation. If the user
does not wish to add to the current text buffer, then the
buffer must be cleared by the D#:* command.

If filename is not given, the next file on the tape is loaded.
When reading, the familiar asterisks will flash in the upper

right comner of the screen. The L command can only read
source files created by the Editor/Assembler.

Example:

2L Loads next source file

*LBMYPROG Searches for and loads source file named
' MYPROG. ¥ is a mandatory blank

Number (N)

form: *N[line[,inc]]

The N command is used to renumber the lines in the edit
buffer. The first line in the buffer is assigned the number
specified or the default §O100 if line is not specified. The
remaining lines in the buffer are renumbered according to
the increment (inc) or the previous inc in an N,R, or |
command if inc was not specified. Period (.) points to the
same line it did before the N command was used, but the
number of this line may be changed.

r'\\
~
s

C

./.-‘"

Examples:

*N Renumbers from 10@ with previous incre-
ment

2NS Renumbers from 5 with previous increment

*NIQ,5 Renumber from 19 in steps of 5

Print (P)
form: *P[linel[:line21]

Prints a line or group of lines on the monitor screen. Period
(.) is updated to point to the last line printed.

Example:

P Prints all lines in the text buffer

*P100:500 Prints lines 10Q through 5@@ inclusive

*p. Prints current line pointed to by period (.)

=p Prints 15 lines starting with the current
line. Repeated use of P allows printout of
source without lines being scrolled off
the screen

Replace (R)

form: *R[linel incl]

The R command only replaces one line and goes into

insert mode. If line exists, it is deleted then inserted. If line
doesn’t exist it is inserted as with the I command. If inc is
not specified, the last inc specified by an I, R or N command
is used. Period (.) is always updated to the current line.

Example:

2R. Replace current line

*R100,10 Start replacing lines Beginn.ing at line 100
and incrementing with 10.

*R100 Start replacing at line 1@ using last
specified increments.

Type (T

form: *T[linel(:line21]

Prints a line or group of lines onto the TRS-80 LINE
PRINTER. Period (.) is updated to point to the last line
printed. This command is much like the H command, only
no line numbers are printed. Only the source text is
printed.

Example:

Sends all lines in the text bufter to
printer

il B

*T100:500 Sends text for lines 109 through 390 to
printer
*T, Sends current line pointed to by period

(.) to the lineprinter.

Scroll and Tab

The Editor/Assembler recognizes the following special
characters:

Scroll up

The T command prints the line preceding the current line and
updates period (.) to the printed line. (If the current line is
the first line in the edit buffer, it is printed and period (.)
remains unchanged.)

Scroll down

The { command prints the line following the current line and
updates period (.) to point to the printed line. (If the current
line is the last line in the buffer, it is printed and period (.)
remains unchanged.) ;

Note: Both 1 and { must be the first character of the com-
mand line or they will be ignored.

Tab

Typing —tabs right to the next 8 character field. Calling the
first position of a source line 1 (line number not counted),
the tabs are at positions 9,17,25,33,41,49,51 and continue
on in increments of 8 up to 255. Tabs should always be used
instead of spaces to conserve text buffer space. A tab (09
hex) only takes up one byte.

Delete character
Backarrow (+) will delete the last character typed. If the last

character was a tab, the cursor jumps backwards to the next
non-blank character. S

(Shift <) Delete Line

A (Shift «) will delete all of the line currently being entered.
This is true for both source lines and commands. '

At any time during an Assembly or printout a (Shift @) may
be typed to halt the computer. Pressing ENTER will

continue the process. The (Shift @) will not be accepted
while a line is being printed or assembled: only between lines.
A pause received while assembling wiil not be recognized

TEXT DEFM "TRS-80 MICROCOMPUTER’

while bytes of the text string are being assembled.
Another pause must be typed after this line is finished
being assembled.

Write (W)

form: *W([Pfilename]

The contents of the edit buffer are written onto a cassette
file under the name filename. If filename is not specified no
file name is used. Period (.) is always left unchanged.

Example:

W

*WHDEMO

Records text buffer to tape with no file-
name '

Records text buffer to tape with a file-
name of DEMO. % is a mandatory blank.

SA

Cassette Tapes

All cassette tapes created by the Editor/ Assembler are writ-
ten at SO0 baud. The cassette tape containing the Editor/

Assembler is also at 500 baud. Whenever reading a 530 baud
tape the VOLUME LEVEL MUST BE BETWEEN 5 AND 6.

The SYSTEM tape, included with the Editor/Assembler,
allows LEVEL [BASIC to read-in the 500 baud Editor/
Assembler tape. First read-in the 25@ baud SYSTEM tape
(with volume at 8 to 9), and then load in the Editor/
Assembler (at volune 5 to 6) as specified in section on
Loading.

LEVEL Il BASIC may directly read-in the 50¢) baud Editor/
Assembler tape.

Execution of object code programs stored on tapes is per-
formed with the SYSTEM command in LEVEL II BASIC.
LEVEL I BASIC must again use the SYSTEM tape to read-in

TRS-80 EDITOR/ASSEMBLER

§8278 [BREAK]

and then execute object code from a 53 baud tape.
Examples of creating object code and then executing it are
given in section on Sample Use.

o

Filenames

Cassette filenames must begin with an alphabetic character.
The remaining characters must be alphanumeric. The length
may not exceed 6 characters. Filenames need not be
specified for the A or W commands and in the event that a
name is not specified, the file is assigned the NONAME
filename. If a filename is not specified when using the

L command, the first file encountered on the tape is loaded
into memory. ;

Sample Use
The following is a sample session using the Editor/Assembler

to write a program. Comments to the reader are enclosed in
[] and are not part of the program. :

*1109,19

ge188 . [~] ORG 5ggaH [—IS ATAB]

gg11ig VIDEO EQU 3CaaH

22120 LD HL , VIDEQ ; SOURCE ADDRESS

23133 LD DE,VIDEO+1 ;DEST. ADDRESS -(i)
28160 LD BC,483H ;BYTE COUNT

931583- LD (HL) ,88FH ;GRAPHICS BYTE

24162 LDIR ;WHITE OUT SCREEN

@9178 ;DELAY LOOP TO KEEP WHITE 0OUT SCREEN ON

po180 LD 8,5

28198 LP1 LD HL ,@FFFFH :VALUE TO DECREMENT

g3288 LP2 DEC HL

28219 LD A,H

ga229 OR L sHL=27?

23230 JP NZ,LP2 ;IF NO DEC AGAIN

23249 DJNZ LP1 sDEC.B--B=07

ge259 JP @H ;RETURN TO BASIC)
93262 END (\

*A XXX [Assemble] [All the following is computer output]

S@3a 231993 ORG SgaaH

. 3C29 gR113 EQU 3CA2H
.Sﬂﬂﬂ 219@3C 29129 LD HL , VIDEOD ; SOURCE ADDRESS
5983 11913C 29140 LD DE,VIDEO+1 ;DEST. ADDRESS
Sgg6 219934 2045 LD BC,490H sBYTE COUNT

Sg@9 36BF 29159 LD (HL) ,9BFH ;GRAPHICS éYTE
Sg@B EDBJ 20160 LDIR | sWHITE OUT SCREEN -

22178 ;DELAY LOOP TO KEEP WHITED OUT SCREEN ON

590D 2685 29180 LD B,5

S@OF 21FFFF 9198 LP1 LD HL,2FFFFH ;VALUE TO DECREMENT

sg12 28 @9299 LP2 DEC - HL

513 7C 98219 — A, H

S@14 B5 23228 OR L sHL=87?

5515 C21252 25230 JP NZ,LP2 ;IF NO DEC AGAIN
5918 10F5 99240 DJNZ LP1 " jDEC.B--B=87

Sg1A C30989 89259 JP oH sRETURN TO BASIC

2300 22269 END |

g@@Fead TOTAL ERRORS

LP2 5g12 [Symbol table]
LP1 S@9F

VIDEO 3Cgg

READY CASSETTE [Load tape;set to RECORD]

[ENTER] [Press ENTER to record object code]

. ;
Now you can save the information in the text buffer (YOUR Execution in LEVEL [BASIC

SOURCE PROGRAM) onto another tape. .
First load the SYSTEM tape (included with your Editor/

*WMYPROG Assembler). Put the SYSTEM tape into your cassette. Be sure
volume is between 8 and 9. Type CLOAD, to load in the

The tape file MYPROG may be read in by the Editor/ _SYSTEM tape. The_program will execute as soon as loading

Assembler’s L command. 1: completed and will type:

Any assembler errors are printed immediately before the line Now enter the filename of your object tape, which was

the error occurred in. created by the Editor/Assembler. Note that you must

use the filename NONAME if a filename was not specified.
With the example program type XXX, the filename of the
object tape.

kR

At this point put the object tape XXX into the cassette
recorder and press PLAY. The volume must be at 5to 6
(this is a S5O0 baud tape). Asterisks will flash in the upper
right screen corner. Once loading is complete the computer
will type * again. Now you must enter the starting address
of the machine code program. The starting address (ORG)
was S@POH which is a decimal 2048(0. Now type this
decimal number preceded with a slash (/). The command
looks like this:

* 28489

Press ENTER, of course, and the machine code program will
execute. The sample program will white-out the video
screen with solid graphics characters. This will stay on the
screen for about 5 seconds. The program will then return to
a READY condition in BASIC.

Executing in LEVEL II BASIC -

Execution is much simpler in LEVEL II BASIC. The object
tape is again loaded at 5 to 6 volume (as are all 5S¢ baud

tapes). The typing is as follows; comments are in brackets|] :

READY

> SYSTEM

—_—

*2 XXX [read in object tape]

*? s20489

The program will now execute and then return to a power up
condition (ENTER MEMORY: SIZE?).

Multiple Modules

You may load several machine language programs into
memory, one after the other. The ORG addresses of these
instructions must be such that each object program does not
conflict with other modules. If you have the following files:

XXX 7009 to 7QFF hexidecimal
Y'Y 7100 to 71FF hexidecimal
ZZZ 7200 to 72FF hexidecimal

You may then enter the three programs as follows:

*2 XXX

o YWY

sty 474

*2 /28672

[jump to XXX program]

ASSEMBLY LANGUAGE
Syntax

The basic format of an assembly command is:

[LABEL] OPCODE [OPERAND(S)] [COMMENT]
Examples:

ORG 7000H
VIDEO EQU 3CppH

LD DE,VIDEO+1 ;DESTINATION
LABELS

A label is a symbolic name of a line code. Labels are always
optional. A label is a string of characters no greater than

6 characters. The first character must be a letter. A label may
not contain the $ character. § is reserved for the value of

the reference counter of the current instruction.

The following labels are reserved for referring to registers only
and may not be used for other purposes: A,B,C,.D.EHL LR,
IX,IY,SP,PC,AF,BC,DE, and HL.

The following 8-labels are reserved for branching conditions
and may not be used for other purposes (these conditions
apply to status flags):

FLAG CONDITION SET _ CONDITION NOT SET
Carry C NC

Zero A NZ

S.gn M(minus) P(plus)

Parity PE(even) PO(odd)

Example: JPNZ, LOOP

If the zero flag is clear (not set), the above instruction jumps
to the instruction specified by LOOP.

OPCODES

The opcodes for the TRS-80 Editor/Assembly exactly
correspond to those in the Z-80-Assembly Language
Programming Manual, 3.0 D.S_, REL. 2.1, FEB 1977. See
section Index to Instruction Set for the instruction in
question.

OPERANDS

Operands are always one or two values separated by commas.
Some instructions require no operands at all.

Examples:

LD HL, 3CopH

-
§

¢

.r"‘—.“x

Py

XOR A
LD (HL), 20H

A value in parentheses () specifies indirect addressing when
used with registers, or “contents of”” otherwise.

Constants may end in any of the following letters:

H - hexidecimal
D - decimal
0O - octal

A constant not followed by one of these letters is assumed to
be a decimal. A constant must begin with a digit. Thus FFH
is illegal, while QFFH is legal.

Expressions using the +, —, &, operations are described in
section, Expressions.

COMMENTS

All comments must begin with a semicolon (;). If a source
line starts with a semicolon in column 1 of the line, the
entire line is a comment.

Expressions

A value of an operand may be an expression consisting of
+,—,&, or symbols. These operations are executed in a
strictly left to right order. No parentheses are allowed. All
four operators are binary. Both + and — have unary uses
also.

Addition (+)

The plus will add two constants and/or symbolic values. When
used as a unary operator, it simply echoes the value.

Example:

PO1E CON30 EQU 39

go19 CON16 EQU 19H ¥

0003 CONS3 EQU " 3

3C00 VIDEO EQU 3C¢¢H

3CR3 Al EQU VIDEO + CON3 :
002E A2 EQU CON3()+ CON16
3C09 A3 EQU +VIDEO

Subtraction (=)

The minus operator will subtract two constants and/or
symbolic values. Unary minus produces a 2’s complement.

Examples:

3BED Al EQU VIDEO-CON3
POOE. A2 EQU CON30—CON16 -
C490 A3 EQU -VIDEO
Logical AND (&)

The logical AND operator logically adds two constants
and/or symbolic values.

Examples:
3Co0 Al EQU 3C0QH & FFH
0000 A2 EQU Q&15

. 9009 A3 EQU QAAAAH & 5555H
Shift ({)

The shift operator can be used to shift a value left or right.
The form is:
VALUE (AMOUNT

If AMOUNT is positive, VALUE is shifted left. If AMOUNT
is negative, VALUE is shifted right.

Examples:

Cooo - Al EQU 3CQgH (4

93Co A2 EQU 3CgpH (—4
BBFF A3 EQU 3CBBH { 8 +255
p3Co. A4 EQU

15 +3CPPH { —4

Z80 STATUS INDICATORS (FLAGS)

The flag register (F and F’) supplies information to the user
regarding the status of the Z80 at any given time. The bit
positions for each flag are shown below:

- P A T e e
Lslz x|l x[ovin]c]

WHERE:

C = CARRY FLAG

N = ADD/SUBTRACT FLAG
P/V = PARITY/OVERFLOW FLAG
H = HALF-CARRY FLAG

Z = ZEROFLAG

S = SIGN FLAG

X =

NOT USED

Sk

Each of the two Z-80 Flag Registers contains 6 bits of status
information which are set or reset by CPU operations. (Bits
3 and 5 are not used.) Four of these bits are testable (C,P/V,
Z and S) for use with conditional jump, call or return
instructions. Two flags are not testable (H,N) and are used
for BCD arithmetic.

CARRY FLAG (C)

The carry bit is set or reset depending on the operation being
performed. For ‘ADD’ instructions that generate a carry and
‘SUBTRACT instructions that generate no borrow, the
Carry Flag will be set. The Carry Flag is reset by an ADD
that does not generate a carry and a ‘SUBTRACT’ that
generates a borrow. This saved carry facilitates software
routines for extended precision arithmetic. Also, the ‘DAA’
instruction will set the Carry Flag if the conditions for
making the decimal adjustment are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is
used as a link between the LSB and MSB for any register

or memory location. During instructions RLCA, RLC s and
SLA s, the carry contains the last value shifted out of bit 7 of
any ragister or memory location. During instructions RRCA,
RRC s, SRA s and SRL s the carry contains the last value
shifted out of bit @ of any register or memory location.

For the logical instructions AND s, OR s and XOR s, the
camry will be reset. ;

The Carry Flag can also be set (SCF) and complemented
(CCF).

ADD/SUBTRACT FLAG (N)

This flag is used by the decimal adjust accumulator instruc-
tion (DAA) to distinguish between ‘ADD’ and *SUBTRACT’
instructions. For all ‘ADD’ instructions, N will be set to a
9’. For all ‘SUBTRACT’ instructions, N will be set to a

“1 n.

PARITY/OVERFLOW FLAG

This flag is set to a particiilar state depending on the
operation being performed.

For arithmetic operations, this flag indicates an overflow
condition when the result in the Accumulator is greater than
the maximum possible number (+127) or is less than the
minimum possible number (—128). This overflow condition

can be determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause
overflow. When adding operands with like signs and the
result has a different sign, the overflow flag is set. For
example:

+120 = G111 1600 ADDEND
+103 = 0110 1001 AUGEND
¥225 1110 9001 (-95) SUM

The two numbers added together has resulted in a number
that exceeds +127 and the two positive operands has resulted
in a negative number (—95) which is incorrect. The overflow
flag is therefore set. :

For subtraction, overflow can occur for operands of unlike
signs. Operands of like sign will never cause overflow. For
example:

+127 Q111 1111 MINUEND
(=)—64 1100 0009 SUBTRAHEND
+191 1911 1111 DIFFERENCE

The minuend sign has changed from a positive to a negative,
giving an incorrect difference. Overflow is therefore set.

Another method for predicting an overflow is to observe
the carry into and out of the sign bit. If there is a carry in
and no carry out, or if there is no carry in and a carry out,
then overflow has occurred.

This flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The number
of *1" bits in a byte are counted. If the total is odd, ‘ODD’
parity (P=0) is flagged. If the total is even, ‘EVEN’ parity is
flagged (P=1). : '

During search instructions (CPI,CPIR,CPD,CPDR) and block
transfer instructions (LDI,LDIR,LDD,LDDR) the P/V flag
monitors the state of the byte count register (BC). When
decrementing, the byte counter results in a zero value, the
flag is reset to @, otherwise the flag is a Logic 1.

During LD Al and LD A,R instructions, the P/V flag will be
set with the contents of the interrupt enable flip-flop (IFF2)
for storage or testing.

When inputting a byte from an I/O device, IN r,(C), the flag
will be adjusted to indicate the parity of the data.

THE HALF CARRY FLAG (H)

The Half Carry Flag (H) will be set or reset depending on the
carry and borrow status between bits 3 and 4 of an 8-bit
arithmetic operation. This flag is used by the decimal adjust
accumulator instruction (DAA) to correct the result of a
packed BCD add or subtract operation. The H flag will be
set (1) or reset () according to the following table:

H | ADD SUBTRACT

There is no borrow
from bit 4

1 | There is a carry from
Bit 3 to Bit 4

There is a borrow
from Bit 4

§ | There is no carry
from Bit 3 to Bit 4

THE ZERO FLAG (Z)

The Zero Flag (Z) is set or reset if the result generated by
the execution of certain instructions is a zero.

%

LY

)

&

For 8-bit arithmetic and logical operations, the Z flag will
be set to a ‘1" if the resulting byte in the Accumulator is
zero. If the byte is not zero, the Z flag is reset to ‘@’

For compare (search) instructions, the Z flag will be set to
a ‘1’ if a comparison is found between the value in the
Accumulator and the memory location pointed to by the
contents of the register pair HL.

When testing a bit in a register or memory location, the Z
flag will contain the complemented state of the indicated
bit (see Bit b.s).

When inputting or outputting a byte between a memory
location and an 1/O device (INIIND;OUTI and QUTD), if
the result of B-1 is zero, the Z flag is set, otherwise it is
reset. Also for byte inputs from I/O devices using IN 1,(C),
the Z Flag is set to indicate a zero byte input.

THE SIGN FLAG (S)

The Sign Flag (S) stores the state of the most significant bit
of the Accumulator (Bit 7). When the Z80 performs arith-
metic operations on signed numbers, binary two’s comple-
ment notation is used to.represent and process numeric
information, A positive number is identified by a ‘Q’ in bit
7. A negative number is identified by a *1’. The binary
equivalent of the magnitude of a positive number is stored in
bits @ to 6 for a total range of from (to 127. A negative
number is representad by the two’s complement of the
equivalent positive number. The total range for negative
numbers is from —1 to —128.

When inputting a byte from a I/O device to a register, IN
r,(C), the S flag will indicate either positive (S=0) or negative
(S=1) data.

PSEUDO-OPS

There are nine pseudo-op (assembler directives) which the
assembler will recognize. These assembler directives; although
written much like processor instructions, are.commands

to the assembler instead of the processor. They direct the
assemnbler to perform specific tasks during the assembly
process but have no meaning to the Z80 processor. These
assembler pseudo-ops are:

ORG nn Sets address reference counter to the
value nn.

EQU nm Sets value of a label to nn in the program:
can occur only once for any label.

DEFL nn Sets value of a label to nn and can be
repeated in the program with different
values for the same label.

END Signifies the end of the source program so

that any following statements are ignored.
If no END statement is found, a waming
is produced. The END statement can spec-

ify a start address i.e. END LABEL, END
600PH. This address is used by the system
program if no start address is given with
the slash (/).

DEFBn Defines the contents of a byte at the

current reference counter to be n.

Defines the content of one byte of
memory to be the ASCII representation of
character s.

DEFB ‘¢’

DEFW nn Defines the contents of a two-byte word to
be nn. The least significant byte is located
at the current reference counter while the
most significant byte is located at the
reference counter plus one.

DEFS nn Reserves nn bytes of memory starting at

the current value of the reference counter.

Defines the content of n bytes of memory
to be the ASCII representation of string

s, where n is the length of s and must be in
the range @ (=n (= 63.

DEFM s’

Assembler Commands

The TRS-80 Editor/Assembier supports only two assembler
commands. Each command must start in column one of a
source line, and must start with an asterisk (*). The
assembler commands are:

*LIST OFF Causes the assembler listing to be
suspended, starting with the next line.
Errors and bad source lines will still be
printed.

*LIST ON Causes assembler listing to resume, starting

with this line.

Z80 INDEX TO INSTRUCTION SET

NOTE: Execution time (E.T.) for each instruction is given in
microseconds for an assumed 4 MHZ clock. Total machine
cycles (M) are indicated with total clock periods (T States).
Also indicated are the number of T States for each M cycle.
For example:
MCYCLES: 2 T STATES: 7(4,3) 4MHZET.: 1.75
indicates that the instruction consists of 2 machine cycles.
The first cycle contains 4 clock periods (T States). The
second cycle contains 3 clock periods for a total of 7 clock
periods or T States. The instruction will execute in 1.75
microseconds.)

Register format is shown for each instruction with the most
significant bit to the left and the least significant bit to the

right.
11

INSTRUCTION SET

TABLE OF CONTENTS Paye
A BIT LOADGROUP © « .« sovesisin s o nnpisinn o n a8 88 13
AT LOAD GROUP .o snsss s vas P TOIr e 24
_EXCHANGE, BLOCK TRANSFER

ANDSEARCHGROURo vs s swmmsmiass s s 34
—8 BIT ARITHMETIC AND LOGICAL GROUP. 43
_GENERAL PURPOSE ARITHMETIC _

AND CPU CONTROL GROUPSccvevvvoseens 56
—16 BIT ARITHMETICGROUP ccoeevnvnen--63
—ROTATE ANDSHIFTGROUP. . .. cceeevvnnens 69
—BIT SET, RESET AND TESTGROUP- 81
TP CROUR .. i s u o o5 wasiins cammamnmsidin o 5 86
“UALL AND BETURN.GROUR: .. . iv-nis s wnv vo v 2 92
—INPUT AND OUTPUT GROUP . . .« ccacavaae e v 98

12

OPERAND NOTATION

The following notation is used in the assembly language:

T
1) rspecifies any one of the following registers: A,B,C.,D, @

E,H,L.

2) (HL) specifies the contents of memory at the location
addressed by the contents of the register pair HL.

3) n specifies a one-byte expression in the range ®to
255) nn specifies a two-byte expression in the range
(0 to 65535)

4) d specifies a one-byte expression in the range (128,
127).

5) (nn) specifies the contents of memory at the location
addressed by the two-byte expression nn.

6) b specities an expression in the range (9,7).

7) e specifies a one-byte expression in the range (—126,

: 129).

8) cc specifies the state of the Flags for conditional JR
and JP instructions.

9) qq specifies any one of the register pairs BC, DE, HL

or AF.

ss specifies any one of the following register pairs:

BC, DE, HL, SP.

pp specifies any one of the following register pairs:

BC,DE IX,SP.

it specifies any one of the following register pairs:

BC,DE,IY,SP. .

s specifies any of r,n,(HL),(IX+d),(IY+d).

dd specifies any one of the following register pairs:

BC,DE HL,SP.

m specifies any of r,(HL),(IX+d),(IY¥+d).

10)
11)
12)

13)
14)

15)

P T T T

e) ahe s ot Chad it L sl

TN, T SR Ty

